Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Arch Virol ; 166(7): 1819-1840, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1141432

ABSTRACT

COVID-19 is an acute respiratory infection accompanied by pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has affected millions of people globally. To date, there are no highly efficient therapies for this infection. Probiotic bacteria can interact with the gut microbiome to strengthen the immune system, enhance immune responses, and induce appropriate immune signaling pathways. Several probiotics have been confirmed to reduce the duration of bacterial or viral infections. Immune fitness may be one of the approaches by which protection against viral infections can be reinforced. In general, prevention is more efficient than therapy in fighting viral infections. Thus, probiotics have emerged as suitable candidates for controlling these infections. During the COVID-19 pandemic, any approach with the capacity to induce mucosal and systemic reactions could potentially be useful. Here, we summarize findings regarding the effectiveness of various probiotics for preventing virus-induced respiratory infectious diseases, especially those that could be employed for COVID-19 patients. However, the benefits of probiotics are strain-specific, and it is necessary to identify the bacterial strains that are scientifically established to be beneficial.


Subject(s)
COVID-19 Drug Treatment , COVID-19/prevention & control , Probiotics/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19 Vaccines/pharmacology , COVID-19 Vaccines/therapeutic use , Dysbiosis , Humans , Immunomodulation , Microbiota , Probiotics/classification , Probiotics/pharmacology , SARS-CoV-2/pathogenicity , Species Specificity
3.
IUBMB Life ; 72(10): 2097-2111, 2020 10.
Article in English | MEDLINE | ID: covidwho-696287

ABSTRACT

The pandemic coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide. To date, there are no proven effective therapies for this virus. Efforts made to develop antiviral strategies for the treatment of COVID-19 are underway. Respiratory viral infections, such as influenza, predispose patients to co-infections and these lead to increased disease severity and mortality. Numerous types of antibiotics such as azithromycin have been employed for the prevention and treatment of bacterial co-infection and secondary bacterial infections in patients with a viral respiratory infection (e.g., SARS-CoV-2). Although antibiotics do not directly affect SARS-CoV-2, viral respiratory infections often result in bacterial pneumonia. It is possible that some patients die from bacterial co-infection rather than virus itself. To date, a considerable number of bacterial strains have been resistant to various antibiotics such as azithromycin, and the overuse could render those or other antibiotics even less effective. Therefore, bacterial co-infection and secondary bacterial infection are considered critical risk factors for the severity and mortality rates of COVID-19. Also, the antibiotic-resistant as a result of overusing must be considered. In this review, we will summarize the bacterial co-infection and secondary bacterial infection in some featured respiratory viral infections, especially COVID-19.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Bacterial Infections/epidemiology , COVID-19/epidemiology , Pandemics , Pneumonia, Bacterial/epidemiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/pathogenicity , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Bacterial Infections/virology , COVID-19/microbiology , COVID-19/virology , Coinfection , Haemophilus influenzae/drug effects , Haemophilus influenzae/pathogenicity , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/drug effects , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Legionella pneumophila/drug effects , Legionella pneumophila/pathogenicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/virology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Respiratory System/drug effects , Respiratory System/microbiology , Respiratory System/pathology , Respiratory System/virology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/pathogenicity , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/pathogenicity , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL